Symétrie centrale - Qu'est-ce que c'est, définition et concept

La symétrie centrale est la situation dans laquelle il existe des points homologues par rapport au point appelé centre de symétrie.

En symétrie, pour l'expliquer autrement, chaque point correspond à un autre qui est à la même distance du point de symétrie.

Pour le définir formellement, la symétrie centrale peut être définie comme le produit de l'accomplissement de la règle suivante : Si nous avons les points X et X', les deux sont symétriques par rapport à un centre (C), si le segment CX est égal au segment CX' (ils sont de même longueur), de sorte que X et X sont à égale distance de C.

Il convient de mentionner que la symétrie centrale peut non seulement être observée dans deux segments, mais également dans des polygones, par exemple deux triangles, qui seront congrus.

Symétrie centrale dans le plan cartésien

La symétrie centrale, dans le plan cartésien, peut être mise en évidence dans les coordonnées des points respectifs. Si le centre de symétrie est (0,0) alors deux points A (x1, y1) et B (x2, y2) sont symétriques si :

x2 = -x1

y2 = -y2

C'est-à-dire que (4,3) et (-4,3) sont symétriques par rapport à (0,0)

Cependant, le centre de symétrie peut être à n'importe quelle coordonnée. Supposons que nous ayons deux points A (x1, y1) et B (x2, y2). Celles-ci sont symétriques par rapport au point C (a, b) lorsque l'on observe ce qui suit :

x2 = -x1 + 2a

y2 = -y1 + 2b

Par exemple, (-4, -6) et (8,12) sont symétriques par rapport au point (2,3).

Symétrie centrale des polygones

Comme nous l'avons décrit, la symétrie centrale peut être remplie entre deux polygones. C'est-à-dire lorsque chaque point de l'un d'eux a un point équidistant correspondant dans l'autre polygone, les deux étant congrus (leurs côtés et leurs angles intérieurs sont de même mesure).

Par exemple, nous pouvons le voir dans l'image suivante :

Le triangle ABC et le triangle DEF sont symétriques par rapport au centre du plan cartésien (0,0). Et cela peut être mis en évidence par les coordonnées des sommets : A (4,2), B (2,6) et C (10,8) correspondent à D (-4-2), E (-2, -6 ) et F (-10, -8), respectivement.

Articles Populaires

Quelle est la pension maximale et minimale en Espagne en 2019?

Si vous avez encore des doutes sur la pension de retraite maximale en 2019 et le minimum établi pour la sécurité sociale en Espagne, nous vous dirons tout ce que vous devez savoir et les conditions que vous devez remplir pour percevoir le maximum. Comme beaucoup de gens le savent, les retraites touchent des millions de personnes en Espagne Lire la suite…

Entretien avec Carlos Gil Bellosta : "Pour un économiste, Excel ne suffit pas"

Aujourd'hui, nous interviewons Carlos J. Gil Bellosta, quelqu'un qui a consacré sa vie aux statistiques, aux mathématiques et à la programmation. Carlos J. Gil Bellosta a travaillé dans des entreprises comme Ebay, BBVA, Everis ou Barclays. Cependant, il est également statisticien, data scientist, passionné de R et blogueur à ses heures perdues.En savoir plus…